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Abstract 
 
Uncertainty is pervading our daily life, our thinking and our decisions 
based on incomplete information. In physics we have excellent theories 
of measuring errors and their adjustment, due to Gauss preceded by 
Boskovich and Legendre, and we have Heisenberg's uncertainty 
relation. Goedel proved that any sufficiently powerful mathematical 
axiom system is either inconsistent or incomplete, with profound 
consequences for the foundations of mathematics and logic. It is trivial 
that the application of formal logic to real-world objects leads to 
difficulties; therefore we have a discipline called "fuzzy logic". Cross-
connections and implications of these matters are discussed. 
 
 
 
 

1. BASIC FACTS 
 

 
1.1. Geometry 

 
Take Euclidean geometry. It may be considered the simplest physical 
theory applicable to reality. (At least the ancient Egyptian land 
surveyors thought so.) What is a point in nature? Have you ever seen a 
point or a triangle? 

Answer: “Of course, drawn with chalk on the blackboard; we 
can also draw it very precisely in another way.” But this is not a 
mathematical point! 

Another example: let the distance between two points be d = 7/3 
= 2.3333333333333....meters. 
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We observe  d = 2.33 m  or d = 2.333333333 m. Is this the same? 
 

After some idealization.... 
But not exactly. 

 
1.2. Logic 

 
The application of logic to  real objects is by no means exact either. 

“John Smith has gray hair” What precisely is meant by “hair” ? 
Is it the same before and after a haircut? And what precisely is the 
object “John Smith”?  Is he the same today as he was yesterday? If he 
shaves himself, does he remain the same? 
 

After some idealization.... 
But not exactly. 

 
1.3. Classical Physics 

 
What are the laws of motion of a planet around the Sun? The laws of 
Kepler, or more precisely, Newtonian physics. What are the underlying 
assumptions? For instance, that the Sun and the planet are mass points. 
Are they really? 
 

After some idealization.... 
But not exactly. 

 
Not only do the observations have unavoidable measuring errors, but 
even the observed objects are not exactly defined, they are “fuzzy 
objects”. So we can pose the question: Is any of these basic theories 
true? 
 

After some idealization.... 
But not exactly. 

 
1.4. Plato’s World of Ideas 

 
More than 2000 years ago, Plato tried to save the situation by a famous 
infamous trick: he invented the wold of  ideas.  
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Ideas are not very popular nowadays: people like 1000 Euros 
better than the idea of 1000 Euros. They want to be realists rather than 
idealists.  
 

1.5. The Three Worlds of Popper and Eccles 
 
This terminology has become popular by the famous (though not 
uncontroversial) work (Popper and Eccles 1977). 

World 1 is the external world of nature in which we move, live, 
and die. It is the “real world'' described by natural science (physics, 
chemistry, biology, geology, etc.) World 1 objects are houses, other 
people, trees, computer hardware, etc. 

World 2 is our internal world of thoughts, perceptions, 
emotions, headaches, joys, etc. 

World 3 is the world of interpersonal human culture. It contains 
mathematics, languages, poetry, music, computer software, etc. It is 
very similar to Plato's world of ideas.  

Philosophers disagree on the extent in which these three worlds 
are “real''. Some do not recognize World 3; they say that the World 3 
object "mathematics'' is only the collection of all books on mathematics 
ever written and published, that is, a collection of physical (World 1) 
objects. (But what about the mistakes contained in those books?) 

Some deny the reality of internal experiences. Those persons are 
lucky because they never seem to have headaches or fear the dentist, 
and unlucky because they never enjoy a good meal. (I don't go so far as 
to say that they are not even thinking.) 

Some philosophers even deny the reality of the external world.  
At any rate, the three-world concept furnishes a very convenient 

terminology even for those who disagree with it.  
 

1.6. Can We Draw a Circle? 
 
Let us summarize and try a simple application. 

Consider mathematical reasoning. Logical and mathematical 
thinking are proverbially rigorous. How can our brain perform exact 
thinking? 

To see the problem, take any mathematical theorem about a 
circle, e.g., its definition: the circle is the geometrical locus of all points 
whose distance from a given point is constant; in other terms, the circle 
is a curve of constant radius.  
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Now comes the paradox: nobody, not even the greatest 
mathematician, has ever seen or drawn a mathematical circle. Nobody 
(I  really mean, nobody), has ever seen or marked a point, and I dare 
say that probably nobody will ever by able to do so.  

What is the reason? Logical, mathematical, and other axiomatic 
systems are rigorous, that is, absolutely accurate, at least in principle. 
For instance, 2+1=3 and not 2.993. Logical and mathematical objects 
belong to World 3. The fact that a mathematician, whose mind belongs 
to World 2, is able to perform a rigorous logical deduction or find a 
rigorous mathematical proof which is recognized as such also by his 
fellow mathematicians, is very remarkable indeed. Mathematicians 
have discovered all properties of and theorems about a circle, without 
ever having been able to construct one on paper!  

But what about the circles constantly used in illustrations in 
books on geometry etc.?  They are not exact circles, as one easily sees 
by looking at them with a magnifying glass or under a microscope. At 
best, they are “fuzzy” realizations of exact, or “real”, circles! 

Some mathematicians write books full of geometric theorems 
and proofs, which do not contain a single figure. All theorems must be 
derivable from the axioms by logical deduction only. It is true that most 
of such books do contain figures, but only as an aid to better visualize 
the geometric situation. 

Thus logicians, mathematicians etc. appear to be capable of 
exact thinking, of dealing with World 3 objects directly. Thus there 
seems to be an intimate relation between World 3 and World 2. In a 
way, exact circles, being objects of World 3, can be transferred exactly 
to World 2.  

Now comes the surprise. Circles cannot be transferred exactly to 
World 1! Realizations in World 1 of abstract World 3 objects such as 
points, straight lines, or circles are  always approximate only!  

Thus we have the following scheme of objects: 
in World 3: exact,  
in World 2: exact (at least in principle), 
in World 1: fuzzy. 
This seems to be a clear indication that World 1 and World 2 are 
essentially different. This appears to be a nontrivial philosophical 
result. 
 

1.7. Application to Physics 
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How exactly does a law of physics fit nature? If the data are inexact, 
are at least the laws exact? The well-known contemporary 
mathematician Penrose (1989, p.183) gave a fine mathematical 
argument, based on Poincare's ideas, that classical mechanics cannot be 
applicable to he real world. This proof is based on the internal structure 
of classical mechanics.   

By  external considerations it is also easy to see (and well 
known in physics), that classical mechanics is only an approximate 
limiting case of relativity theory for small velocities v (v << c, c being 
the light velocity) and a limiting case of quantum mechanics for h  0 
(h being Planck’s constant); cf.  (Moritz and Hofmann-Wellenhof 1993, 
pp. 233 and 311). 

Unfortunately, general relativity and quantum mechanics are 
incompatible, so at least one of them must be inexact, too. But how can 
a physical theory be exact if even the concepts which it uses cannot be 
defined exactly? Have you ever seen a point mass? Not even a 
geometric point can be defined exactly as we have seen! So the 
approximate character of any physical theory is not really surprising. 
 

1.8. A Practical Conclusion 
 
"Pure" classical mechanics admits only conservative forces derivable 
from a potential, such as in celestial mechanics and in the theory of  
physical geodesy. No frictional forces are considered here. 

However, friction is essential in everyday life. Everyone uses 
matches to kindle fire by rubbing a match on a match box. In 
elementary physics we learn that friction converts mechanical energy 
into heat. If we want to conserve mechanical energy, we cannot have a 
friction term. This is classical mechanics as treated in textbooks of 
theoretical physics. 

Now imagine that, in nature, there was no friction. We could not  
go by our car from home to the office! Why? On pressing the gas pedal, 
we could not get the car moving (imagine that the car stands on ice!). 
This is fortunate because we could not stop the moving car because 
braking is based on friction! We could not even walk from the bed to 
the washroom if the floor is absolutely slippery. Think how difficult it 
is to walk or drive on slippery ice, and ice is not absolutely slippery. 

So does classical mechanics hold in our everyday life? 
 
After some idealization.... 
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But not exactly. 
 
Fortunately. 
 
 

2. VARIOUS UNCERTAINTIES 
 
 

2.1. Gauss: Observational Errors 
 
After earlier attempts by R. Boskovich  and A.M. Legendre, C.F.Gauss 
(1777 - 1855) created a theory of errors in a perfect and comprehensive 
form which is valid even today, in spite of the great progress of 
statistics since then. The principle is that every measurement or 
empirical determination of a physical quantity is affected by measuring 
errors of random character, which are unknown but subject to statistical 
laws.  

Error theory has always been basic in geodesy and astronomy 
(Boskovich and Gauss discovered error theory for their geodetic 
work!), but has been less popular in physics. Theorists frequently 
thought that, at least in principle, the experimental arrangements should 
always be made so accurate that measuring errors can be neglected. 
This is, usually implicitly, assumed in any book on theoretical physics. 
You will hardly find a chapter of error theory in a course of theoretical 
physics. (In experimental physics it is different, there they have error 
bars and use statistics.)  
   

2.2. Heisenberg: Uncertainties in Quantum Theory 
 
Unavoidable observational errors came to the general center of 
attention of physicists first around 1925 when W. Heisenberg 
established his famous uncertainty relation: 
 
                     π2/hqp ≥∆∆      

 
where  h  is Planck's constant basic in quantum theory. It states that a 
coordinate  q  and a momentum  p  (mass times velocity) cannot both 
be measured with arbitrary precision. If  q  is very accurate ( 0→∆q ), 
then the error p∆  in  p  will be very great, that is, an accurate 
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measurement of position  q∆   makes the momentum  p  very uncertain. 
In a way, the observer’s measurement disturbs the outcome.  

Heisenberg's uncertainty relation is of fundamental conceptual 
importance and thus has become justly famous. In fact, Heisenberg's 
relation is much more popular with natural scientists and natural 
philosophers than Gauss' error theory, although the latter, as the 
geophysicist Jeffreys (1961, pp. 13 - 14) remarked, is certainly much 
more important in everyday experimental practice than Heisenberg's 
uncertainty relation. Ordinary observational errors are usually much 
larger than Heisenberg's quantum uncertainties.  
 

2.2.1 Heisenberg Effects in Biology and Psychology 
 

Curiously enough, the disturbing of the surrounding world by 
observation implied by the Heisenberg relation, has been a well-known 
fact in life sciences, long before the arrival of quantum theory, but its 
philosophical implications have hardly been noticed. 

If a man observes a girl, the very act of observation changes the 
"object": the girl blushes, touches her hair, comes closer or walks away. 
In medicine, this is the placebo effect which is so important that great 
care is needed to take it into account (or rather to eliminate it) in testing 
a new medicament. The very fact that the patient thinks that a new 
medication being tested on him may relieve his symptoms, makes the 
medication possibly effective even if it is only a placebo (a medically 
inactive substance).  

.If you observes a dog, he may wish to play with you or bite 
you. He will certainly not remain passive under observation. If you 
don’t know the dog, you may suffer from a very unpleasant 
"Heisenberg uncertainty" concerning the behavior of the dog in the next 
second. Dogs may be almost as dangerous as quantum theory! 
 

2.3. Goedel: Uncertainties in Mathematics ? 
 
On the other hand, mathematics has always been regarded as the 
prototype of an exact science. This belief received a deadly blow by K. 
Goedel's incompleteness theorem published in 1931. Goedel showed 
that mathematics can never be fully axiomatized: it is either incomplete 
or inconsistent. This implies that there may be true mathematical 
theorems which cannot be deduced from a finite set of mathematical 
axioms. Furthermore, mathematics, including set theory, as used in 
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contemporary practice, cannot be proved to be consistent by an 
algorithmic procedure as used, for instance, in a computer. Polish 
logicians, Tarski and others, have obtained similar results. 

H. Weyl, one of the pioneers of modern mathematics and 
physics, was so pessimistic about the foundations of logic and 
mathematics that he wrote: “How much more convincing and closer to 
facts are the heuristic arguments and the subsequent systematic 
constructions in Einstein's general relativity theory, or the Heisenberg -
Schroedinger quantum mechanics'' (Weyl 1949, p. 235). 

In the working practice of mathematicians, however, Goedel's 
incompleteness is largely ignored (e.g., the Bourbaki school), in the 
same ways as in the working practice of physicists (except quantum 
physicists), Heisenberg's uncertainty plays a negligible role.  

Nevertheless, both facts are with us and make us aware of a 
theoretical “skeleton in the cupboard'' which lurks at the back of all our 
scientific work, of a basic element of insecurity.  

Both kinds of uncertainty, however, are very subtle and usually 
very small “second-order effects''.  Less well advertised, but usually 
much larger, is the effect of Gaussian observational errors (and of 
computer round-off errors!). So to speak, the latter are first-order 
effects''. 
 

2.4. Poincare:  Chaos, Instability and Probability 
 

Let our theoretical basis be “classical'' Euclidean geometry, classical 
(Newtonian) mechanics and Gaussian error theory. The fundamental 
dogma of this way of thinking has been the (frequently unconscious) 
belief that Gaussian errors can be made as small as we wish so that, at 
least theoretically; they can be completely disregarded. The events of 
nature proceed in a deterministic way, subject to causality according to 
classical mechanics. Euclidean geometry and Newtonian mechanics are 
not essentially affected by measuring uncertainties. Even if the initial 
conditions are not known with absolute precision, this does not 
essentially affect the result computed according to the laws of classical 
mechanics. The computed final results will not be essentially less 
accurate than the initial data.  

This is the point of view of deterministic causality. It has found 
its classical expression in the form of “Laplace's demon”: 
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“An intelligent being which, for some given moment of time, knew all 
the forces by which nature is driven, and the relative position of the 
objects by which it is composed (provided the being's intelligence were 
so vast as to be able to analyze accurately all the data), would be able to 
comprise, in a single formula, the movements of the largest bodies in 
the universe and those of the lightest atom: nothing would be uncertain 
to it, and both the future and the past would be present to its eyes. The 
human mind offers in the perfection which it has been able to give to 
astronomy, a feeble inkling of such an intelligence.” (P. Laplace, 1749 -
1827).  
 

The Newtonian theory has proved particular useful in 
astronomy, where the planets moving around the sun may be regarded 
as  mass points, and where friction can be disregarded. On the basis of 
our present orbital determinations (the “initial conditions''), the 
movements of planets can be predicted with very high precision 
hundreds of years ahead. This seems to be an ideal case of stability.  

This is in stark contrast with meteorological weather prediction 
which works only a few days ahead and is a typical case of instability. 
A small error in the initial conditions may cause an arbitrarily great 
error in the predicted results. This is E. N.  Lorenz' “butterfly effect'': a 
butterfly flapping its wings in Austria may cause a tornado in the 
United States. 

Lorenz' work in 1963 was one of the starting points of modern  
chaos theory, or deterministic chaos (Schuster 1988). Curiously 
enough, chaos theory nevertheless goes back to astronomy since Henri 
Poincare (1892)  showed that the usual trigonometric series of celestial 
mechanics may frequently be divergent. This introduces uncertainties 
of chaos type even in astronomical predictions, but only for very long-
range predictions (on the order of thousands of years, perhaps).  

Already H. Bruns pointed out in 1884 that an astronomical 
series may be convergent or divergent, depending on whether a certain 
empirical parameter is a rational or irrational number. Now, to any 
irrational number, there can be found an arbitrarily close rational 
number, so that the question of whether a certain astronomical series is 
mathematically convergent or divergent, is physically meaningless! 

Now since we know that not everything in nature is stable, 
instabilities and chaos are seen everywhere in nature.  

What is characteristic for chaos may be expressed as: “small 
causes  large effects” (for example: butterfly  tornado). Another 
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phenomenon of this kind is the throw of dice. If, with one set of initial 
conditions (position and velocity of the hand throwing the die) we get a 
5, with another set of initial conditions (even if it is practically 
identical, e.g., using a dice-throwing machine) we may throw a 3.  

So the initial conditions become irrelevant, and symmetry takes 
over: all six faces of the die have equal probability. Thus probability 
arises from deterministic but chaotic motion. This also, as well as 
meteorological instability, was clearly recognized already by Poincare.  

Chaotic effects in nature thus are frequently responsible for 
probabilistic laws, and also random errors are of this kind. Reading an 
angle with a theodolite involves various movements (the hand turning a 
micrometer screw, rapid involuntary eye movements, etc.) which are 
(at least according  to classical physics) completely determined, if not 
in practice, then at least in theory. Nevertheless we have random errors 
because a deterministic analysis simply is not practically feasible (even 
if it were theoretically possible which I doubt).  

So modern chaos theory does throw a strong light on the 
relation between determinism and randomness, including Gaussian 
errors. 
 

2.5. Conclusions 
 

What comes first, determinism or randomness? 
Statistical mechanics leads to (deterministic) thermodynamics: 

Order out of chaos. 
Poincare’s dice lead to a probabilistic distribution: Chaos out of 

order. But the probabilities are equal (1/6), displaying perfect symmetry 
or “order”. 

The same holds with chaos theory. Figures are often 
surprisingly regular, as the well-known fractals of Lorenz and 
Mandelbrot show. Quantum theory suggests a probabilistic background 
with random fluctuations. So chaos seems to come first. 

But God created order out of chaos.  
 

After some idealization.... 
But perhaps not exactly. 
 

God has His own ways. 
 
 



 11

REFERENCES 
 
Jeffreys H (1961) Theory of Probability, 3rd ed., Oxford Univ. Press.  
 
Moritz H (1995) Science, Mind and the Universe: an Introduction to 
Natural Philosophy, Wichmann, Heidelberg. 
 
Moritz H and Hofmann-Wellenhof B (1993) Geometry, 
Relativity, Geodesy, Wichmann, Karlsruhe. 
 
Penrose R (1989) The Emperor's New Mind: Concerning Computers, 
Minds, and the Laws of Physics, Oxford Univ. Press.  
 
Poincare H (1892) Les Methodes Nouvelles de la Mecanique Celeste, 
Gauthier-Villars, Paris. 
 
Popper K R and Eccles J C (1977) The Self and Its Brain, Springer, 
Berlin.  
 
Schuster H G (1988) Deterministic Chaos, 2nd ed., VCH, Weinheim.  
 
Weyl H (1949) Philosophy of Mathematics and Natural Science, 
Princeton Univ. Press. 
 
 
Reproduced, with kind permission of the editors, from Festschrift Bogdan Ney, 
Proceedings of the Institute of Geodesy and Cartography 104, Warszawa 2004 


